Recent Related Articles

Reliability of molecular host-identification methods for ticks: an experimental in vitro study with Ixodes ricinus

Parasites and Vectors -

Background: Reliable information on host use by arthropod vectors is required to study pathogen transmission ecology and to predict disease risk. Direct observation of host use is often difficult or impossible and indirect methods are therefore necessary. However, the reliability of currently available methods to identify the last host of blood-feeding arthropods has not been evaluated, and may be particularly problematic for ticks because host blood has been digested at capture. Biases in host detection may lead to erroneous conclusions on both vector ecology and pathogen circulation. Methods: Here, we experimentally tested for biases in host detection using the generalist three-host tick Ixodes ricinus as a model system. We fed ticks using an artificial feeding system and amplified blood meal traces post-moult (i.e., in the succeeding unfed life stage) via both a quantitative real-time polymerase chain reaction assay and a reverse line blotting method. We then experimentally tested for three types of biases in host detection: 1) time post-moult, 2) tick life stage and 3) host type (non-nucleated mammal blood versus nucleated avian blood), and compared these biases between the two molecular methods. Results: Our results show that all three factors can influence host detection in ticks but not necessarily in the expected way. Although host detection rates decreased with time post-moult, mammal blood tended to be more readily detected than bird blood. Tick life stage was also an important factor; detection was higher in nymphs than in adults and, in some cases, remnants from both larval and nymphal blood meals could be detected in the adult stage. These biases were similar for the two detection techniques. Conclusions: We show that different factors associated with questing ticks may influence our ability to correctly infer previous host use and that these factors may bias inferences from field-based studies. As these biases may be common to other vector-borne disease systems, their implications for our understanding of vector ecology and disease transmission require more explicit consideration.

Predicting potential ranges of primary malaria vectors and malaria in northern South America based on projected changes in climate, land cover and human population

Parasites and Vectors -

Background: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria vectors and hosts. Methods: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent. Results: Results from our land change modeling indicate that about 70,000 km 2 of forest land would be lost by 2050 and 78,000 km 2 by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are expected to decrease in line with current downward trends, both vectors are predicted to experience range expansions in the future. Elevation, annual precipitation and temperature were influential in all models both current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An. nuneztovari s.l. distribution. Conclusion: As the region tackles the challenge of malaria elimination, investigations such as this could be useful for planning and management purposes and aid in predicting and addressing potential impediments to elimination.

Path analyses of cross-sectional and longitudinal data suggest that variability in natural communities of blood-associated parasites is derived from host characteristics and not interspecific interactions

Parasites and Vectors -

Background: The parasite composition of wild host individuals often impacts their behavior and physiology, and the transmission dynamics of pathogenic species thereby determines disease risk in natural communities. Yet, the determinants of parasite composition in natural communities are still obscure. In particular, three fundamental questions remain open: (1) what are the relative roles of host and environmental characteristics compared with direct interactions between parasites in determining the community composition of parasites? (2) do these determinants affect parasites belonging to the same guild and those belonging to different guilds in similar manners? and (3) can cross-sectional and longitudinal analyses work interchangeably in detecting community determinants? Our study was designed to answer these three questions in a natural community of rodents and their fleas, ticks, and two vector-borne bacteria. Methods: We sampled a natural population of Gerbillus andersoni rodents and their blood-associated parasites on two occasions. By combining path analysis and model selection approaches, we then explored multiple direct and indirect paths that connect (i) the environmental and host-related characteristics to the infection probability of a host by each of the four parasite species, and (ii) the infection probabilities of the four species by each other. Results: Our results suggest that the majority of paths shaping the blood-associated communities are indirect, mostly determined by host characteristics and not by interspecific interactions or environmental conditions. The exact effects of host characteristics on infection probability by a given parasite depend on its life history and on the method of sampling, in which the cross-sectional and longitudinal methods are complementary. Conclusions: Despite the awareness of the need of ecological investigations into natural host-vector-parasite communities in light of the emergence and re-emergence of vector-borne diseases, we lack sampling methods that are both practical and reliable. Here we illustrated how comprehensive patterns can be revealed from observational data by applying path analysis and model selection approaches and combining cross-sectional and longitudinal analyses. By employing this combined approach on blood-associated parasites, we were able to distinguish between direct and indirect effects and to predict the causal relationships between host-related characteristics and the parasite composition over time and space. We concluded that direct interactions within the community play only a minor role in determining community composition relative to host characteristics and the life history of the community members.

Comparison of the phlebotomine (Diptera: Psychodidae) fauna of urban, transitional, and wild areas in northern Minas Gerais, Brazil

Parasites and Vectors -

Background: Phlebotomines are directly related to the study of leishmaniases, and so the study of their distribution plays an important role in the epidemiology of these diseases. Collections of phlebotomines were made with the intent of comparing the distribution, richness, diversity, and abundance of species in three distinct environments in an area endemic for tegumentary and visceral leishmaniasis in Minas Gerais State, Brazil. Methods: Phlebotomines were collected with automatic light traps in urban, transitional, and wild areas from March 2013 to February 2014 in the district of Barra do Guaicuí, municipality of Várzea da Palma, Minas Gerais. The distribution patterns of these species of insects, as well as species richness, evenness, and abundance among the different areas, were analyzed. Results: A total of 3,365 phlebotomines belonging to 15 species were collected. The urban area had the greatest abundance whereas the transitional area had the greatest diversity and evenness of species. Nyssomyia intermedia was the most abundant species in the urban area, whereas Evandromyia evandroi was the most abundant in the transitional area and Ev. lenti in the wild area. Conclusion: The analysis of our results showed that the distribution of the collected species had distinct profiles between the environments studied. Furthermore our study indicates the potential risk of transmission of leishmaniasis in the urban environment where it was observed had the highest population density and abundance of important vector species of Leishmania.

Spatial distribution of Glossina sp . and Trypanosoma sp . in south-western Ethiopia

Parasites and Vectors -

Background: Accurate information on the distribution of the tsetse fly is of paramount importance to better control animal trypanosomosis. Entomological and parasitological surveys were conducted in the tsetse belt of south-western Ethiopia to describe the prevalence of trypanosomosis (PoT), the abundance of tsetse flies (AT) and to evaluate the association with potential risk factors. Methods: The study was conducted between 2009 and 2012. The parasitological survey data were analysed by a random effects logistic regression model, whereas the entomological survey data were analysed by a Poisson regression model. The percentage of animals with trypanosomosis was regressed on the tsetse fly count using a random effects logistic regression model. Results: The following six risk factors were evaluated for PoT (i) altitude: significant and inverse correlation with trypanosomosis, (ii) annual variation of PoT: no significant difference between years, (iii) regional state: compared to Benishangul-Gumuz (18.0 %), the three remaining regional states showed significantly lower PoT, (iv) river system: the PoT differed significantly between the river systems, (iv) sex: male animals (11.0 %) were more affected than females (9.0 %), and finally (vi) age at sampling: no difference between the considered classes. Observed trypanosome species were T. congolense (76.0 %), T. vivax (18.1 %), T. b. brucei (3.6 %), and mixed T. congolense/vivax (2.4 %).The first four risk factors listed above were also evaluated for AT, and all have a significant effect on AT. In the multivariable model only altitude was retained with AT decreasing with increasing altitude. Four different Glossina species were identified i.e. G. tachinoides (52.0 %), G. pallidipes (26.0 %), G.morsitans submorsitans (15.0 %) and G. fuscipes fuscipes (7.0 %). Significant differences in catches/trap/day between districts were observed for each species. No association could be found between the tsetse fly counts and trypanosomosis prevalence. Conclusions: Trypanosomosis remains a constraint to livestock production in south-western Ethiopia. Four Glossina and three Trypanosoma species were observed. Altitude had a significant impact on AT and PoT. PoT is not associated with AT, which could be explained by the importance of mechanical transmission. This needs to be investigated further as it might jeopardize control strategies that target the tsetse fly population.

Malaria vectors in South America: current and future scenarios

Parasites and Vectors -

Background: Malaria remains a significant public health issue in South America. Future climate change may influence the distribution of the disease, which is dependent on the distribution of those Anopheles mosquitoes competent to transmit Plasmodium falciparum. Herein, predictive niche models of the habitat suitability for P. falciparum, the current primary vector Anopheles darlingi and nine other known and/or potential vector species of the Neotropical Albitarsis Complex, were used to document the current situation and project future scenarios under climate changes in South America in 2070. Methods: To build each ecological niche model, we employed topography, climate and biome, and the currently defined distribution of P. falciparum, An. darlingi and nine species comprising the Albitarsis Complex in South America. Current and future (i.e., 2070) distributions were forecast by projecting the fitted ecological niche model onto the current environmental situation and two scenarios of simulated climate change. Statistical analyses were performed between the parasite and each vector in both the present and future scenarios to address potential vector roles in the dynamics of malaria transmission. Results: Current distributions of malaria vector species were associated with that of P. falciparum, confirming their role in transmission, especially An. darlingi, An. marajoara and An. deaneorum. Projected climate changes included higher temperatures, lower water availability and biome modifications. Regardless of future scenarios considered, the geographic distribution of P. falciparum was exacerbated in 2070 South America, with the distribution of the pathogen covering 35-46 % of the continent. As the current primary vector An. darlingi showed low tolerance for drier environments, the projected climate change would significantly reduce suitable habitat, impacting both its distribution and abundance. Conversely, climate generalist members of the Albitarsis Complex showed significant spatial and temporal expansion potential in 2070, and we conclude these species will become more important in the dynamics of malaria transmission in South America. Conclusions: Our data suggest that climate and landscape effects will elevate the importance of members of the Albitarsis Complex in malaria transmission in South America in 2070, highlighting the need for further studies addressing the bionomics, ecology and behaviours of the species comprising the Albitarsis Complex.

Inhibition of Haemonchus contortus larval development by fungal lectins

Parasites and Vectors -

Background: Lectins are carbohydrate-binding proteins that are involved in fundamental intra- and extracellular biological processes. They occur ubiquitously in nature and are especially abundant in plants and fungi. It has been well established that certain higher fungi produce lectins in their fruiting bodies and/or sclerotia as a part of their natural resistance against free-living fungivorous nematodes and other pests. Despite relatively high diversity of the glycan structures in nature, many of the glycans targeted by fungal lectins are conserved among organisms of the same taxon and sometimes even among different taxa. Such conservation of glycans between free-living and parasitic nematodes is providing us with a useful tool for discovery of novel chemotherapeutic and vaccine targets. In our study, a subset of fungal lectins emanating from toxicity screens on Caenorhabditis elegans was tested for their potential to inhibit larval development of Haemonchus contortus. Methods: The effect of Coprinopsis cinerea lectins - CCL2, CGL2, CGL3; Aleuria aurantia lectin – AAL; Marasmius oreades agglutinin - MOA; and Laccaria bicolor lectin – Lb-Tec2, on cultivated Haemonchus contortus larval stages was investigated using a larval development test (LDT). To validate the results of the toxicity assay and determine lectin binding capacity to the nematode digestive tract, biotinylated versions of lectins were fed to pre-infective larval stages of H. contortus and visualized by fluorescent microscopy. Lectin histochemistry on fixed adult worms was performed to investigate the presence and localisation of lectin binding sites in the disease-relevant developmental stage. Results: Using an improved larval development test we found that four of the six tested lectins: AAL, CCL2, MOA and CGL2, exhibited a dose-dependent toxicity in LDT, as measured by the number of larvae developing to the L3 stage. In the case of AAL, CGL2 and MOA lectin, doses as low as 5 μg/ml caused >95 % inhibition of larval development while 40 μg/ml were needed to achieve the same inhibition by CCL2 lectin. MOA was the only lectin tested that caused larval death while other toxic lectins had larvistatic effect manifesting as L1 growth arrest. Using lectin histochemistry we demonstrate that of all lectins tested, only the four toxic ones displayed binding to the larvae’s gut and likewise were found to interact with glycans localized to the gastrodermal tissue of adults. Conclusion: The results of our study suggest a correlation between the presence of target glycans of lectins in the digestive tract and the lectin-mediated toxicity in Haemonchus contortus. We demonstrate that binding to the structurally conserved glycan structures found in H. contortus gastrodermal tissue by the set of fungal lectins has detrimental effect on larval development. Some of these glycan structures might represent antigens which are not exposed to the host immune system (hidden antigens) and thus have a potential for vaccine or drug development. Nematotoxic fungal lectins prove to be a useful tool to identify such targets in parasitic nematodes.

Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection

Parasites and Vectors -

Background: Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. Methods: A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. Results: The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. Conclusions: These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control.

Experimental Transmission of Karshi (Mammalian Tick-Borne Flavivirus Group) Virus by Ornithodoros Ticks >2,900 Days after Initial Virus Exposure Supports the Role of Soft Ticks as a Long-Term Maintenance Mechanism for Certain Flaviviruses

Plos One: Public Health and Epidemiology -

by Michael J. Turell

Background

Members of the mammalian tick-borne flavivirus group, including tick-borne encephalitis virus, are responsible for at least 10,000 clinical cases of tick-borne encephalitis each year. To attempt to explain the long-term maintenance of members of this group, we followed Ornithodoros parkeri, O. sonrai, and O. tartakovskyi for >2,900 days after they had been exposed to Karshi virus, a member of the mammalian tick-borne flavivirus group.

Methodology/Principal Findings

Ticks were exposed to Karshi virus either by allowing them to feed on viremic suckling mice or by intracoelomic inoculation. The ticks were then allowed to feed individually on suckling mice after various periods of extrinsic incubation to determine their ability to transmit virus by bite and to determine how long the ticks would remain infectious. The ticks remained efficient vectors of Karshi virus, even when tested >2,900 d after their initial exposure to virus, including those ticks exposed to Karshi virus either orally or by inoculation.

Conclusions/Significance

Ornithodoros spp. ticks were able to transmit Karshi virus for >2,900 days (nearly 8 years) after a single exposure to a viremic mouse. Therefore, these ticks may serve as a long-term maintenance mechanism for Karshi virus and potentially other members of the mammalian tick-borne flavivirus group.

Techniques to improve the maintenance of a laboratory colony of Nyssomyia neivai (Diptera: Psychodidae)

Parasites and Vectors -

Background: The most critical phase in sand fly colonization is the high mortality in the larval instars. In this study, we sought out strategies for improving the colonization of Nyssomyia neivai, one of the vectors of cutaneous leishmaniasis agent in South America. Methods: A colony of Ny. neivai was established in the laboratory from a field population, and the productivity of adults was evaluated considering carrying capacity, diet for larvae and surface for oviposition. Results: The highest emergency rate of adults was achieved with the fewest couples inside 150 mL rearing chambers on a sterilized diet made of rabbit feces, rabbit food, soil and fish food and with vermiculite as a substrate for oviposition and the development of larvae. Conclusion: Our data on Ny. neivai colonization showed that the best adult productivities were achieved with fewer couples inside the rearing chambers; smaller rearing containers of 150 mL (due to less fungi growth); sterilized diet made of rabbit feces, rabbit food, soil and fish food; and vermiculite as the substrate for oviposition and development of larvae.

Phytoecdysteroids as modulators of the Toxoplasma gondii growth rate in human and mouse cells

Parasites and Vectors -

Background: Searching for new effective drugs against human and animal toxoplasmosis we decided to test the anti-Toxoplasma potential of phytoecdysteroids (α-ecdysone and 20-hydroxyecdysone) characterized by the pleiotropic activity on mammalian organisms including the enhancement of host’s anti-parasitic defence. This objective was accomplished by the in vitro evaluation of T. gondii growth in phytoecdysteroid-treated immunocompetent cells of selected hosts: humans and two strains of inbred mice with genetically determined different susceptibility to toxoplasmosis. Methods: Peripheral mononuclear blood cells were isolated from Toxoplasma-positive and Toxoplasma-negative women (N = 43) and men (N = 21). Non-infected mice (C57BL/6, N = 10 and BALB/c, N = 14) and mice (BALB/c, N = 10) challenged intraperitoneally with 5 tissue cysts of the T. gondii DX strain were also used in this study as a source of splenocytes. The effects of phytoecdysteroids on the viability of human PBMC and mouse splenocytes were evaluated using the MTT assay. The influence of phytoecdysteroids on PBMCs, splenocytes and T. gondii proliferation was measured using radioactivity tests (the level of 3[H] uracil incorporation by toxoplasms or 3[H] thymidine by PBMCs and splenocytes), which was confirmed by quantitative Real-Time PCR. Statistical analysis was performed using SigmaStat 3.5 (Systat Software GmbH). The best-fit IC50 curves were plotted using GraphPad Prism 6.0 (GraphPad Software, Inc.). Results: Our results showed that phytoecdysteroids promote the multiplication of Toxoplasma in cultures of human or murine immune cells, in contrast to another apicomplexan parasite, Babesia gibsoni. Additionally, the tested phytoecdysteroids did not stimulate the in vitro secretion of the essential protective cytokines (IFN-γ, IL-2 and IL-10), neither by human nor by murine immune cells involved in an effective intracellular killing of the parasite. Conclusions: Judging by the effect of phytoecdysteroids on the T. gondii proliferation, demonstrated for the first time in this study, it seems that these compounds should not be taken into consideration as potential medications to treat toxoplasmosis. Phytoecdysteroids included in the food are most likely not harmful for human or animal health but certain nutrients containing ecdysteroids at high concentrations could promote T. gondii proliferation in chronically infected and immunocompromised individuals. In order to assess the real impact of ecdysteroids on the course of natural T. gondii invasion, in vivo research should be undertaken because it cannot be ruled out that the in vivo effect will be different than the in vitro one. However, taking into account the possible stimulating effect of ecdysteroids on some opportunistic parasites (such as Toxoplasma or Strongyloides) further studies are necessary and should focus on the mechanisms of their action, which directly or indirectly enhance the parasite growth. Since ecdysteroids are considered as potential drugs, it is essential to determine their effect on various parasitic pathogens, which may infect the host at the same time, especially in immunocompromised individuals.

Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK

Parasites and Vectors -

Background: Determining the host feeding patterns of mosquitoes by identifying the origin of their blood-meals is an important part of understanding the role of vector species in current and future disease transmission cycles. Collecting large numbers of blood-fed mosquitoes from the field is difficult, therefore it is important to maximise the information obtained from each specimen. This study aimed to use mosquito genome sequence to identify the species within Anopheles maculipennis sensu lato (An. maculipennis s.l.), identify the vertebrate hosts of field-caught blood-fed An. maculipennis s.l. , and to test for the presence of myxoma virus (Poxviridae, genus Leporipoxvirus) in specimens found to have fed on the European rabbit (Oryctolagus cuniculus). Methods: Blood-fed An. maculipennis s.l. were collected from resting sites at Elmley Nature Reserve, Kent, between June and September 2013. Hosts that An. maculipennis s.l. had fed on were determined by a PCR-sequencing approach based on the partial amplification of the mitochondrial cytochrome C oxidase subunit I gene. Mosquitoes were then identified to species by sequencing a region of the internal transcribed spacer-2. DNA extracts from all mosquitoes identified as having fed on rabbits were subsequently screened using PCR for the presence of myxoma virus. Results: A total of 94 blood-fed Anopheles maculipennis s.l. were collected, of which 43 (46 %) provided positive blood-meal identification results. Thirty-six of these specimens were identified as Anopheles atroparvus, which had fed on rabbit (n = 33, 92 %) and cattle (n = 3, 8 %). Seven mosquitoes were identified as Anopheles messeae, which had fed on cattle (n = 6, 86 %) and dog (n = 1, 14 %). Of the 33 An. atroparvus that contained rabbit blood, nine (27 %) were positive for myxoma virus. Conclusions: Results demonstrate that a single DNA extract from a blood-fed mosquito can be successfully used for molecular identification of members of the An. maculipennis complex, blood-meal identification, and for the targeted detection of a myxoma virus. This study shows that An. atroparvus has a strong feeding preference for both healthy and myxoma-infected rabbits, providing evidence that this species may play a significant role in the transmission of myxomatosis among wild rabbit populations in the United Kingdom (UK).

Nitric oxide stimulates early egress of Toxoplasma gondii tachyzoites from Human foreskin fibroblast cells

Parasites and Vectors -

Background: Egress is a vital step in the life cycle of Toxoplasma gondii which attracts attentions of many groups. Previous studies have shown that exogenous nitric oxide (NO) stimulates the early egress of T. gondii from infected peritoneal macrophages, a kind of immune cells. However, because Toxoplasma forms cysts in brain and muscle tissues, the development of autonomous immunity in non-immune cells is vital for limiting parasite burden and cyst formation. Therefore, we attempted to investigate whether exogenous NO could induce the early egress of T. gondii from infected non-immune cells. Methods: T. gondii tachyzoites were cultured in human foreskin fibroblast (HFF) cells and were then treated with NO released by sodium nitroferricyanide (III) dihydrate (SNP). The egressed parasites were analysed by flow cytometry. Results: The results showed that NO induced the early egress of parasites from HFF cells before completing their intracellular life cycles. We also found that the occurrence of egress was dependent on intracellular calcium (Ca 2+ ) levels and the mobility of the parasite. Compared with freshly isolated tachyzoites, the developmental ability and virulence of egressed tachyzoites presented no difference. Conclusions: Taken together, our findings demonstrate a novel assay for the analysis of egress signalling mechanisms and an avenue of parasite clearance by hosts of T. gondii.

Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany

Parasites and Vectors -

Background: The amphipod and microsporidian diversity in freshwaters of a heterogeneous urban region in Germany was assessed. Indigenous and non-indigenous host species provide an ideal framework to test general hypotheses on potentially new host-parasite interactions, parasite spillback and spillover in recently invaded urban freshwater communities. Methods: Amphipods were sampled in 17 smaller and larger streams belonging to catchments of the four major rivers in the Ruhr Metropolis (Emscher, Lippe, Ruhr, Rhine), including sites invaded and not invaded by non-indigenous amphipods. Species were identified morphologically (hosts only) and via DNA barcoding (hosts and parasites). Prevalence was obtained by newly designed parasite-specific PCR assays. Results: Three indigenous and five non-indigenous amphipod species were detected. Gammarus pulex was further distinguished into three clades (C, D and E) and G. fossarum more precisely identified as type B. Ten microsporidian lineages were detected, including two new isolates (designated as Microsporidium sp. nov. RR1 and RR2). All microsporidians occurred in at least two different host clades or species. Seven genetically distinct microsporidians were present in non-invaded populations, six of those were also found in invaded assemblages. Only Cucumispora dikerogammari and Dictyocoela berillonum can be unambiguously considered as non-indigenous co-introduced parasites. Both were rare and were not observed in indigenous hosts. Overall, microsporidian prevalence ranged from 50 % (in G. roeselii and G. pulex C) to 73 % (G. fossarum) in indigenous and from 10 % (Dikerogammarus villosus) to 100 % (Echinogammarus trichiatus) in non-indigenous amphipods. The most common microsporidians belonged to the Dictyocoela duebenum- /D. muelleri- complex, found in both indigenous and non-indigenous hosts. Some haplotype clades were inclusive for a certain host lineage. Conclusions: The Ruhr Metropolis harbours a high diversity of indigenous and non-indigenous amphipod and microsporidian species, and we found indications for an exchange of parasites between indigenous and non-indigenous hosts. No introduced microsporidians were found in indigenous hosts and prevalence of indigenous parasites in non-indigenous hosts was generally low. Therefore, no indication for parasite spillover or spillback was found. We conclude that non-indigenous microsporidians constitute only a minimal threat to the native amphipod fauna. However, this might change e.g. if C. dikerogammari adapts to indigenous amphipod species or if other hosts and parasites invade.

First report outside Eastern Europe of West Nile virus lineage 2 related to the Volgograd 2007 strain, northeastern Italy, 2014

Parasites and Vectors -

Background: West Nile virus (WNV) is a Flavivirus transmitted to vertebrate hosts by mosquitoes, maintained in nature through an enzootic bird-mosquito cycle. In Europe the virus became of major public health and veterinary concern in the 1990s. In Italy, WNV re-emerged in 2008, ten years after the previous outbreak and is currently endemic in many areas of the country. In particular, the northeastern part of Italy experience continuous viral circulation, with human outbreaks caused by different genovariants of WNV lineage 1, Western-European and Mediterranean subcluster, and WNV lineage 2, Hungarian clade. Alongside the WNV National Surveillance Program that has been in place since 2002, regional surveillance plans were implemented after 2008 targeting mosquitoes, animals and humans.FindingsIn July and September 2014, West Nile virus lineage 2 was detected in pools of Culex pipiens s.l. mosquitoes from northeastern Italy. Whole genome sequencing and phylogenetic analysis of two representative samples identified the presence of WNV lineage 2 related to the Volgograd 2007 strain (99.3 % nucleotide sequence identity), in addition to WNV lineage 2 Hungarian clade. Conclusions: This is the first evidence of the circulation of a WNV lineage 2 strain closely related to the Volgograd 2007 outside Eastern Europe, where it has caused large human outbreaks. This strain may pose a new threat to animal and human health in Italy.

Pages

Subscribe to -   PALE-Blu Data Portal aggregator - Recent Related Articles