Recent Related Articles

Experimental studies on comparison of the vector competence of four Italian Culex pipiens populations for West Nile virus

Parasites and Vectors -

Background: West Nile virus (WNV) is a vector-borne disease responsible for causing epidemics in many areas of the world. The virus is maintained in nature by an enzootic bird-mosquito-bird cycle and occasionally transmitted to other hosts, such as equines and humans. Culex species, in particular the ubiquitous species Culex pipiens is thought to play a major vector role both in enzootic and epizootic maintenance and transmission of WNV. Introduced in Europe in recent years, since 2008 WNV has been stably circulating mainly in the Northeastern regions of Italy, although sporadic equine and/or human cases, as well as WNV infected Cx. pipiens pools, have been recorded in other Italian areas. The scope of our study was to evaluate the potential competence of some Italian populations of Cx. pipiens to transmit WNV and to assess their ability for vertical transmission of the virus. For this purpose four Italian populations, from different areas, were experimentally infected. Methods: After the infectious blood meal, fed females were monitored for 32 days to determine the length of viral extrinsic incubation period. WNV titre of infected mosquitoes was evaluated both by quantitative Real Time PCR and viral titration by Plaque Forming Units/ml (PFU/mL) in VERO cells. Potential Infection, Dissemination, Transmission rates (IR, DR, TR) were assessed by detection of the virus in body, legs plus wings and saliva of the fed females, respectively. Results: All tested populations were susceptible to the WNV infection. The viral presence in legs and wings demonstrated the ability of WNV to disseminate in the mosquitoes. Viral RNA was detected in the saliva of tested populations. No significant differences in TR values were observed among the four studied populations. The offspring of the Cx. pipiens infected females were WNV negative. Conclusions: Our study addressed an important issue in the knowledge on the complex WNV-vector relationships in Italy, indicating that all Italian Cx. pipiens populations tested exhibited vector competence for WNV. Further studies should be performed in order to better clarify the role of other factors (vector density, climatic conditions, reservoir presence etc.) in order to predict where and when WNV outbreaks could occur.

Non-structural protein NS3/NS3a is required for propagation of bluetongue virus in Culicoides sonorensis

Parasites and Vectors -

Background: Bluetongue virus (BTV) causes non-contagious haemorrhagic disease in ruminants and is transmitted by Culicoides spp. biting midges. BTV encodes four non-structural proteins of which NS3/NS3a is functional in virus release. NS3/NS3a is not essential for in vitro virus replication. However, deletion of NS3/NS3a leads to delayed virus release from mammalian cells and largely reduces virus release from insect cells. NS3/NS3a knockout BTV in sheep causes no viremia, but induces sterile immunity and is therefore proposed to be a Disabled Infectious Single Animal (DISA) vaccine candidate. In the absence of viremia, uptake of this vaccine strain by blood-feeding midges would be highly unlikely. Nevertheless, unintended replication of vaccine strains within vectors, and subsequent recombination or re-assortment resulting in virulent phenotypes and transmission is a safety concern of modified-live vaccines. Methods: The role of NS3/NS3a in replication and dissemination of BTV1, expressing VP2 of serotype 2 within colonized Culicoides sonorensis midges was investigated. Virus strains were generated using reverse genetics and their growth was examined in vitro. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV with or without expressing NS3/NS3a and replication in the midge was examined using RT PCR. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. Results: Although the parental NS3/NS3a expressing strain was not able to replicate and disseminate within C. sonorensis after oral feeding, this virus was able to replicate efficiently when the midgut infection barrier was bypassed by intrathoracic injection, whereas the NS3/NS3a knockout mutant was unable to replicate. This demonstrates that NS3/NS3a is required for viral replication within Culicoides. Conclusion: The lack of viremia and the inability to replicate within the vector, clearly demonstrate the inability of NS3/NS3a knockout DISA vaccine strains to be transmitted by midges.

Bluetongue virus infection creates light averse Culicoides vectors and serious errors in transmission risk estimates

Parasites and Vectors -

Background: Pathogen manipulation of host behavior can greatly impact vector-borne disease transmission, but almost no attention has been paid to how it affects disease surveillance. Bluetongue virus (BTV), transmitted by Culicoides biting midges, is a serious disease of ruminant livestock that can cause high morbidity and mortality and significant economic losses. Worldwide, the majority of surveillance for Culicoides to assess BTV transmission risk is done using UV-light traps. Here we show that field infection rates of BTV are significantly lower in midge vectors collected using traps baited with UV light versus a host cue (CO 2 ). Methods: We collected Culicoides sonorensis midges in suction traps baited with CO 2 , UV-light, or CO 2  + UV on three dairies in southern California to assess differences in the resulting estimated infection rates from these collections. Pools of midges were tested for BTV by qRT-PCR, and maximum likelihood estimates of infection rate were calculated by trap. Infection rate estimates were also calculated by trapping site within a dairy. Colonized C. sonorensis were orally infected with BTV, and infection of the structures of the compound eye was examined using structured illumination microscopy. Results: UV traps failed entirely to detect virus both early and late in the transmission season, and underestimated virus prevalence by as much as 8.5-fold. CO 2  + UV traps also had significantly lower infection rates than CO 2 -only traps, suggesting that light may repel infected vectors. We found very high virus levels in the eyes of infected midges, possibly causing altered vision or light perception. Collecting location also greatly impacts our perception of virus activity. Conclusions: Because the majority of global vector surveillance for bluetongue uses only light-trapping, transmission risk estimates based on these collections are likely severely understated. Where national surveillance programs exist, alternatives to light-trapping should be considered. More broadly, disseminated infections of many arboviruses include infections in vectors’ eyes and nervous tissues, and this may be causing unanticipated behavioral effects. Field demonstrations of pathogen-induced changes in vector behavior are quite rare, but should be studied in more systems to accurately predict vector-borne disease transmission.

A PCR-RFLP Assay targeting RPS8 gene for the discrimination between bovine Babesia and Theileria species in China

Parasites and Vectors -

Background: Bovine babesiosis and theileriosis is an important hemoprotozoal disease in cattles and yaks in tropical and subtropical regions leading to significant economic losses. In the field, the risk of co-infection between the bovine Babesia and Theileria species is very high. Thus, it is necessary to develop a simple, accurate, rapid and cost-effective method for large-scale epidemic investigation, in particular for the detection of co-infection in field. Methods: In this study, DNA sequences of a ribosomal protein S8 (RPS8) gene from eight species of cattle piroplasms in China were used to develop a species-specific PCR-RFLP diagnostic tool. The eight Theileria and Babesia species could be differentiated by digesting the RPS8 PCR product with Mbo I. Results: The sensitivity of the PCR assays was 0.1 pg DNA for Babesia species but 1 pg DNA for Theileria species. The clearly different size of the PCR-RFLP products allowed for a direct discrimination between eight bovine Theileria and Babesia species (T. annulata, T. sinensis, T. sergenti, B. ovata, B. bovis, B. bigemina, B. major and Babesia species Kashi isolate). Conclusion: Our results indicated that the established method based on the RPS8 gene was a reliable molecular diagnostic tool for the simultaneous detection and identification of bovine Babesia and Theileria species in China, which could be applicable for the survey of parasite dynamics, epidemiological studies as well as prevention and control of the disease.

Polymorphism in drug resistance genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium falciparum in some states of India

Parasites and Vectors -

Background: Sulfadoxine-pyrimethamine (SP) combination drug is currently being used in India for the treatment of Plasmodium falciparum as partner drug in artemisinin-based combination therapy (ACT). Resistance to sulfadoxine and pyrimethamine in P. falciparum is linked with mutations in dihydropteroate synthase (pfdhps) and dihydrofolate reductase (pfdhfr) genes respectively. This study was undertaken to estimate the prevalence of such mutations in pfdhfr and pfdhps genes in four states of India. Methods: Plasmodium falciparum isolates were collected from two states of India with high malaria incidence i.e., Jharkhand and Odisha and two states with low malaria incidence i.e., Andhra Pradesh and Uttar Pradesh between years 2006 to 2012. Part of sulfadoxine-pyrimethamine (SP) drug resistance genes, pfdhfr and pfdhps were PCR-amplified, sequenced and analyzed. Results: A total of 217 confirmed P. falciparum isolates were sequenced for both Pfdhfr and pfdhps gene. Two pfdhfr mutations 59R and 108N were most common mutations prevalent in all localities in 77 % of isolates. Additionally, I164L was found in Odisha and Jharkhand only (4/70 and 8/84, respectively). Another mutation 51I was found in Odisha only (3/70). The pfdhps mutations 436A, 437G, 540E and 581G were found in Jharkhand and Odisha only in 13, 26, 14 and 13 % isolates respectively, and was absent in Uttar Pradesh and Andhra Pradesh. Combined together for pfdhps and pfdhfr locus, triple, quadruple, quintuple and sextuple mutations were present in Jharkhand and Odisha while absent in Uttar Pradesh and Andhra Pradesh. Conclusion: While only double mutants of pfdhfr was present in low transmission area (Uttar Pradesh and Andhra Pradesh) with total absence of pfdhps mutants, up to sextuple mutations were present in high transmission areas (Odisha and Jharkhand) for both the genes combined. Presence of multiple mutations in pfdhfr and pfdhps genes linked to SP resistance in high transmission area may lead to fixation of multiple mutations in presence of high drug pressure and high recombination rate.

Host-feeding behaviour of Dermacentor reticulatus and Dermacentor marginatus in mono-specific and inter-specific infestations

Parasites and Vectors -

Background: Given the sympatric occurrence in some regions of Europe and the great epidemiological significance of D. reticulatus and D. marginatus species, we investigated the behaviour of these ticks during inter-specific and mono-specific host infestations.FindingsThe investigations were conducted on rabbits at 20 ± 3 °C and humidity of 38 ± 1 %. The inter-specific infestations groups consisted of 20 females and ten males of D. marginatus and 20 females and ten males of D. reticulatus on each host, whereas mono-specific infestations involved 40 females and 20 males of each species.The investigations have demonstrated competition between the two tick species resulting in modification of the behaviour on the host and the feeding course in D. marginatus females by the presence of D. reticulatus. In the inter-specific group, D. marginatus females attached for a longer time (mean 2.74 ± 1.12 h) than in the mono-specific group (mean 1.24 ± 0.97 h) (p < 0.0001). The feeding period of these females was shorter (9.45 ± 1.30 days) than in the mono-specific group (13.15 ± 2.53 days) (p < 0.0001), but they exhibited a statistically significantly higher body weight in comparison with the females from the mono-specific infestation (p = 0.0155). In D. reticulatus females, no significant difference was found in the host attachment and feeding rates between the mono-specific and inter-specific groups. Conclusions: The differences in the behaviour of the females from both species during co-feeding reflect physiological adaptation to environmental conditions, which enables them to ingest blood and reproduce. During co-feeding of D. reticulatus and D. marginatus on the same host, two inter-specific systems with different physiological features are formed, which may influence the transmission of tick-borne pathogens.

Determination of the optimal mating age of colonised Glossina brevipalpis and Glossina austeni using walk-in field cages in South Africa

Parasites and Vectors -

Background: For the control of Glossina brevipalpis and Glossina austeni that occur in South Africa an area-wide integrated pest management (AW-IPM) program with a sterile insect technique (SIT) component has been proposed. The quality of the released sterile male tsetse flies will greatly determine the success of the SIT component of the programme. Sterile males need to be able to compete with wild males immediately after their release in the affected area. The mating competitiveness can be affected by many factors including the optimal mating age of the fly which can have an impact on the timing of the release. Methods: To assess the optimal mating age for G. brevipalpis and G. austeni, mating competitiveness studies were carried out in a walk-in field cage. First, the time of peak fly activity was determined by performing the experiment in the morning and then again in the afternoon. Thereafter, 3, 6 and 9-day-old male flies competed for 3-day-old virgin females. Results: There were no significant differences in mating performance when the field cage experiments were done in the morning or in the afternoon. However, the mating latency was shorter in the afternoon than in the morning. For both species 9-day-old males mated significantly more often than 6 or 3-day-old males. Age did not affect the males’ ability to transfer sperm, mating duration or the mating latency. All females that mated were inseminated. Conclusions: Age did influence the mating competitiveness of G. brevipalpis and G. austeni and it is recommended that sterile males are not released before the age of 9 days. Keeping the male flies in the rearing facility for 8 days will have economic and logistic consequences for AW-IPM programmes that have a SIT component.

Hemozoin &#8220;knobs&#8221; in Opisthorchis felineus infected liver

Parasites and Vectors -

Background: Hemozoin is the pigment produced by some blood-feeding parasites. It demonstrates high diagnostic and therapeutic potential. In this work the formation of co-called hemozoin “knobs” – the bile duct ectasia filled up by hemozoin pigment - in Opisthorhis felineus infected hamster liver has been observed. Methods: The O. felineus infected liver was examined by histological analysis and magnetic resonance imaging (MRI). The pigment hemozoin was identified by Fourier transform infrared spectroscopy and high resolution electrospray ionization mass spectrometry analysis. Hemozoin crystals were characterised by high resolution transmission electron microscopy. Results: Hemozoin crystals produced by O. felineus have average length 403 nm and the length-to-width ratio equals 2.0. The regurgitation of hemozoin from parasitic fluke during infection leads to formation of bile duct ectasia. The active release of hemozoin from O. felineus during in vitro incubation has also been evidenced. It has been shown that the hemozoin knobs can be detected by magnetic resonance imaging. Conclusions: In the paper for the first time the characterisation of hemozoin pigment extracted from liver fluke O. felineus has been conducted. The role of hemozoin in the modification of immune response by opisthorchiasis is assumed.

RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs

Parasites and Vectors -

Background: The extensive use of pyrethroids for control of malaria vectors, driven by their cost, efficacy and safety, has led to widespread resistance. To favor their sustainable use, the World Health Organization (WHO) formulated an insecticide resistance management plan, which includes the identification of the mechanisms of resistance and resistance surveillance. Recognized physiological mechanisms of resistance include target site mutations in the para voltage-gated sodium channel, metabolic detoxification and penetration resistance. Such understanding of resistance mechanisms has allowed the development of resistance monitoring tools, including genotyping of the kdr mutation L1014F/S in the para gene. Methods: The sequence-based technique RNA-seq was applied to study changes in the transcriptome of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from the Western Province of Kenya. The resulting gene expression profiles were compared to data in the most recent literature to derive a list of candidate resistance genes. RNA-seq data were analyzed also to identify sequence polymorphisms linked to resistance. Results: A total of five candidate-resistance genes (AGAP04177, AGAP004572, AGAP008840, AGAP007530 and AGAP013036) were identified with altered expression between resistant and susceptible mosquitoes from West and East Africa. A change from G to C at position 36043997 of chromosome 3R resulting in A101G of the sulfotransferase gene AGAP009551 was significantly associated with the resistance phenotype (odds ratio: 5.10). The kdr L1014S mutation was detected at similar frequencies in both phenotypically resistant and susceptible mosquitoes, suggesting it is no longer fully predictive of the resistant phenotype. Conclusions: Overall, these results support the conclusion that resistance to pyrethroids is a complex and evolving phenotype, dependent on multiple gene functions including, but not limited to, metabolic detoxification. Functional convergence among metabolic detoxification genes may exist, with the role of each gene being modulated by the life history and selection pressure on mosquito populations. As a consequence, biochemical assays that quantify overall enzyme activity may be a more suitable method for predicting metabolic resistance than gene-based assays.

The mitochondrial genome of Angiostrongylus mackerrasae as a basis for molecular, epidemiological and population genetic studies

Parasites and Vectors -

Background: Angiostrongylus mackerrasae is a metastrongyloid nematode endemic to Australia, where it infects the native bush rat, Rattus fuscipes. This lungworm has an identical life cycle to that of Angiostrongylus cantonensis, a leading cause of eosinophilic meningitis in humans. The ability of A. mackerrasae to infect non-rodent hosts, specifically the black flying fox, raises concerns as to its zoonotic potential. To date, data on the taxonomy, epidemiology and population genetics of A. mackerrasae are unknown. Here, we describe the mitochondrial (mt) genome of A. mackerrasae with the aim of starting to address these knowledge gaps. Methods: The complete mitochondrial (mt) genome of A. mackerrasae was amplified from a single morphologically identified adult worm, by long-PCR in two overlapping amplicons (8 kb and 10 kb). The amplicons were sequenced using the MiSeq Illumina platform and annotated using an in-house pipeline. Amino acid sequences inferred from individual protein coding genes of the mt genomes were concatenated and then subjected to phylogenetic analysis using Bayesian inference. Results: The mt genome of A. mackerrasae is 13,640 bp in size and contains 12 protein coding genes (cox1-3, nad1-6, nad4L, atp6 and cob), and two ribosomal RNA (rRNA) and 22 transfer RNA (tRNA) genes. Conclusions: The mt genome of A. mackerrasae has similar characteristics to those of other Angiostrongylus species. Sequence comparisons reveal that A. mackerrasae is closely related to A. cantonensis and the two sibling species may have recently diverged compared with all other species in the genus with a highly specific host selection. This mt genome will provide a source of genetic markers for explorations of the epidemiology, biology and population genetics of A. mackerrasae.

Mitochondrial genomes of two phlebotomine sand flies, Phlebotomus chinensis and Phlebotomus papatasi (Diptera: Nematocera), the first representatives from the family Psychodidae

Parasites and Vectors -

Background: Leishmaniasis is a worldwide but neglected disease of humans and animal transmitted by sand flies, vectors that also transmit other important diseases. Mitochondrial genomes contain abundant information for population genetic and phylogenetic studies, important in disease management. However, the available mitochondrial sequences of these crucial vectors are limited, emphasizing the need for developing more mitochondrial genetic markers. Methods: The complete mitochondrial genome of Phlebotomus chinensis was amplified in eight fragments and sequenced using primer walking. The mitochondrial genome of Phlebotomus papatasi was reconstructed from whole-genome sequencing data available on Genbank. The phylogenetic relationship of 24 selected representatives of Diptera was deduced from codon positions 1 and 2 for 13 protein coding genes, using Bayesian inference (BI) and maximum likelihood (ML) methods. Results: We provide the first Phlebotomus (P. chinensis and P. papatasi) mitochondrial genomes. Both genomes contain 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and an A + T-rich region. The gene order of Phlebotomus mitochondrial genomes is identical with the ancestral gene order of insect. Phylogenetic analyses demonstrated that Psychodidae and Tanyderidae are sister taxa. Potential markers for population genetic study of Phlebotomus species were also revealed. Conclusion: The generated mitochondrial genomes of P. chinensis and P. papatasi represent a useful resource for comparative genomic studies and provide valuable future markers for the population genetic study of these important Leishmania vectors. Our results also preliminary demonstrate the phylogenetic placement of Psychodidae based on their mitochondrial genomes.

Baseline susceptibility to alpha-cypermethrin in Lutzomyia longipalpis (Lutz &amp; Neiva, 1912) from Lapinha Cave (Brazil)

Parasites and Vectors -

Background: Given the increase in cases of visceral leishmaniasis in recent years, associated with the socio-economic impact of this disease, as well as the wide distribution of Lutzomyia longipalpis in Brazil and the likelihood that this vector may develop resistance to insecticides used for control, the Ministry of Health considers as crucial the creation of a network in order to study and monitor the resistance of this vector to insecticides used for control. In this sense, this study aimed: 1) to characterize the susceptibility of L. longipalpis from Lapinha Cave (Lagoa Santa, MG - Brazil) to Alfateck SC200 in field bioassays, and 2) to define the susceptibility baseline to alpha-cypermethrin in laboratory bioassays, checking the possibility of using it as susceptibility reference lineage (SRL).FindingsThe field bioassays revealed that the tested population was highly susceptible to alpha-cypermethrin in all time periods with high mortality (~100 %) in all treated surfaces before six months after spraying. In the laboratory bioassays, the studied population presented LD 50 , LD 95 and LD 99 to 0.78013, 10.5580 and 31.067 mg/m 2 , respectively. The slope was 1.454121. Conclusions: The studied population of L. longipalpis was considered as adequate for SRL according criterion recommended by Pan-American Health Organization and has proven susceptibility to tested insecticide in the field. One cannot rule out the possibility of finding populations of L. longipalpis more susceptible to alpha-cypermethrin; therefore, further research is necessary on other populations with potential use as a SRL.

Molecular and Phylogenetic analysis revealed new genotypes of Theileria annulata parasites from India

Parasites and Vectors -

Background: Tick borne diseases impinge cattle worldwide causing mortality and resulting in huge economic losses. Theileriosis is one of the important tick borne diseases mainly caused by Theileria annulata and one of the commonly occurring infections among the livestock. T. annulata causes immense loss to the livestock industry and therefore, efficacious eradication and control strategies are needed for the control of the disease. Genetic diversity among T. annulata parasites is another important aspect which is overlooked in India. Thus, the present study aims to evaluate the prevalence along with genetic diversity and phylogeny of the prevailing T. annulata population of India. Methods: Genomic DNA was extracted from cattle blood samples (n = 862) from different regions of Andhra Pradesh. Molecular diagnosis using T. annulata 18S rRNA based PCR was performed to detect parasites in cattle. Further, 18S rRNA gene was cloned and sequenced to determine similarity and diversity from the known T. annulata sequences. Results: We observed an overall prevalence rate of 32.40 % T. annulata infection in Andhra Pradesh based on PCR assay. The sequence analysis revealed novel genotypes among the T. annulata strains from India. Thirteen strains showed closed proximity with a strain from China whereas one Indian strain showed similarity with a South African strain [Theileria sp (buffalo)] based on phylogenetic analysis. Nucleotide heterogeneity of the 18S rRNA sequence among the strains examined varied from 0.1 to 8.6 % when compared with the published strains. Conclusion: The present study provides us with the molecular prevalence of theileriosis, and will support the accomplishment of actions or in design of strategy to control theileriosis transmission to cattle. Additionally, it highlights the emergence of strains with novel genotypes from India.

Highly discordant serology against Trypanosoma cruzi in central Veracruz, Mexico: role of the antigen used for diagnostic

Parasites and Vectors -

Background: Chagas disease is a parasitic disease caused by the protozoan parasite Trypanosoma cruzi. In Mexico, the burden of the disease is difficult to estimate and improving surveillance for Chagas disease is an important priority. We aimed here at determining the seroprevalence of T. cruzi infection in humans in a rural community in Veracruz. Methods: Serum samples (196) were analyzed for T. cruzi infection using five enzyme-linked immunosorbent assay (ELISA) tests: two in-house tests based on crude parasite extract and three commercial ELISA kits. Because of highly discordant results, we further explored the importance of parasite antigens and strains by western-blot analysis. Results: A total of 74 samples (37.7 %) were reactive with at least one ELISA, but discordance among tests was very high. The best agreement was between Chagatest recombinant and Chagatek ELISA (Kappa index = 0.798). The agreement between other combinations of tests ranged from 0.038 to 0.518. Discordant samples were confirmed by western-blot analysis using up to nine parasite strains, giving a seroprevalence of 33.7 %. Conclusions: Commercial tests had a very limited ability to detect T. cruzi infection in the study population. In-house tests based on crude parasite antigens showed a greater sensitivity but were still unable to detect all cases of T. cruzi infection, even when based on a local parasite strain. The high seroprevalence confirmed the hyper-endemicity of T. cruzi infection in the region. Reliable epidemiological surveillance of Chagas disease will require the development of improved diagnostic tests.

Mosquito Rasputin interacts with chikungunya virus nsP3 and determines the infection rate in Aedes albopictus

Parasites and Vectors -

Background: Chikungunya virus (CHIKV) is an arthritogenic alphavirus (family Togaviridae), transmitted by Aedes species mosquitoes. CHIKV re-emerged in 2004 with multiple outbreaks worldwide and recently reached the Americas where it has infected over a million individuals in a rapidly expanding epidemic. While alphavirus replication is well understood in general, the specific function (s) of non-structural protein nsP3 remain elusive. CHIKV nsP3 modulates the mammalian stress response by preventing stress granule formation through sequestration of G3BP. In mosquitoes, nsP3 is a determinant of vector specificity, but its functional interaction with mosquito proteins is unclear. Methods: In this research we studied the domains required for localization of CHIKV nsP3 in insect cells and demonstrated its molecular interaction with Rasputin (Rin), the mosquito homologue of G3BP. The biological involvement of Rin in CHIKV infection was investigated in live Ae. albopictus mosquitoes. Results: In insect cells, nsP3 localized as cytoplasmic granules, which was dependent on the central domain and the C-terminal variable region but independent of the N-terminal macrodomain. Ae. albopictus Rin displayed a diffuse, cytoplasmic localization, but was effectively sequestered into nsP3-granules upon nsP3 co-expression. Site-directed mutagenesis showed that the Rin-nsP3 interaction involved the NTF2-like domain of Rin and two conserved TFGD repeats in the C-terminal variable domain of nsP3. Although in vitro silencing of Rin did not impact nsP3 localization or CHIKV replication in cell culture, Rin depletion in vivo significantly decreased the CHIKV infection rate and transmissibility in Ae.albopictus. Conclusions: We identified the nsP3 hypervariable C-terminal domain as a critical factor for granular localization and sequestration of mosquito Rin. Our study offers novel insight into a conserved virus-mosquito interaction at the molecular level, and reveals a strong proviral role for G3BP homologue Rin in live mosquitoes, making the nsP3-Rin interaction a putative target to interfere with the CHIKV transmission cycle.

Comparative evaluation of the Sticky-Resting-Box-Trap, the standardised resting-bucket-trap and indoor aspiration for sampling malaria vectors

Parasites and Vectors -

Background: Understanding mosquito resting behaviour is important for the control of vector-borne diseases, but this remains a challenge because of the paucity of efficient sampling tools. We evaluated two novel sampling methods in the field: the Sticky Resting Box (SRB) and the Resting Bucket trap (RBu) to test their efficiency for sampling malaria vectors resting outdoors and inside houses in rural Tanzania. The performance of RBu and SRB was compared outdoors, while indoors SRB were compared with the Back Pack Aspiration method (BP). Trapping was conducted within 4 villages in the Kilombero Valley, Tanzania over 14 nights. On each night, the performance for collecting Anopheles vectors and Culicinae was compared in 4 households by SRB and RBu outdoors and by SRB or fixed-time Back Pack aspirator in 2 of the 4 focal households indoors.FindingsA total of 619 Anopheles gambiae s.l., 224 Anopheles funestus s.l. and 1737 Culicinae mosquitoes were captured. The mean abundance of An. arabiensis and An. funestus s.l. collected with SRB traps inside and outdoors was significantly lower than with BP or RBu. The SRB however, outperformed BP aspiration for collection of Culicinae indoors. Conclusions: Of the methods trialled indoors (BP and SRB), BP was the most effective, whilst outdoors RBu performed much better than SRB. However, as SRB can passively sample mosquitoes over a week they could provide an alternative to the RBu where daily monitoring is not possible.

Rickettsia raoultii in Haemaphysalis erinacei from marbled polecats, China&#8211;Kazakhstan border

Parasites and Vectors -

We found Rickettsia raoultii DNA in 2 out of 32 (6.25 %) Haemaphysalis erinacei ticks. Result showed that the sequences of five genes (17-kDa, gltA, ompA, rrs, and ompB) were 100 % identity with that of R. Raoultii in GenBank. This study is the first report on the presence of R. raoultii in H. erinacei from wild marbled polecat, Vormela peregusna. Our findings suggest that H. erinacei parasitizing wild marbled polecat may serve as reservoir and carriers for R. raoultii in areas around the China-Kazakhstan border. The transmission of tick-borne diseases originated from wildlife should not be underestimated in border region.

Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s.

Parasites and Vectors -

Background: Anopheles mosquito life-history parameters and population dynamics strongly influence malaria transmission, and environmental factors, particularly temperature, strongly affect these parameters. There are currently some studies on how temperature affects Anopheles gambiae s.s. survival but very few exist examining other life-history traits. We investigate here the effect of temperature on population dynamics parameters. Methods: Anopheles gambiae s.s. immatures were reared individually at 23 ± 1 °C, 27 ± 1 °C, 31 ± 1 °C, and 35 ± 1 °C, and adults were held at their larval temperature or at one of the other temperatures. Larvae were checked every 24 h for development to the next stage and measured for size; wing length was measured as a proxy for adult size. Females were blood fed three times, and the number of females feeding and laying eggs was counted. The numbers of eggs and percentage of eggs hatched were recorded. Results: Increasing temperatures during the larval stages resulted in significantly smaller larvae (p = 0.005) and smaller adults (p < 0.001). Adult temperature had no effect on the time to egg laying, and the larval temperature of adults only affected the incubation period of the first egg batch. Temperature influenced the time to hatching of eggs, as well as the time to development at every stage. The number of eggs laid was highest when adults were kept at 27 °C, and lowest at 31 °C, and higher adult temperatures decreased the proportion of eggs hatching after the second and third blood meal. Higher adult temperatures significantly decreased the probability of blood feeding, but the larval temperature of adults had no influence on the probability of taking a blood meal. Differences were observed between the first, second, and third blood meal in the times to egg laying and hatching, number of eggs laid, and probabilities of feeding and laying eggs. Conclusions: Our study shows that environmental temperature during the larval stages as well as during the adult stages affects Anopheles life-history parameters. Data on how temperature and other climatic factors affect vector life-history parameters are necessary to parameterise more reliably models predicting how global warming may influence malaria transmission.

Detection of viable plasmodium ookinetes in the midguts of anopheles coluzzi using PMA-qrtPCR

Parasites and Vectors -

Background: Mosquito infection with malaria parasites depends on complex interactions between the mosquito immune response, the parasite developmental program and the midgut microbiota. Simultaneous monitoring of the parasite and bacterial dynamics is important when studying these interactions. PCR based methods of genomic DNA (gDNA) have been widely used, but their inability to discriminate between live and dead cells compromises their application. The alternative method of quantification of mRNA mainly reports on cell activity rather than density.MethodQuantitative real-time (qrt) PCR in combination with Propidium Monoazide (PMA) treatment (PMA-qrtPCR) has been previously used for selectively enumerating viable microbial cells. PMA penetrates damaged cell membranes and intercalates in the DNA inhibiting its PCR amplification. Here, we tested the potential of PMA-qrtPCR to discriminate between and quantify live and dead Plasmodium berghei malarial parasites and commensal bacteria in the midgut of Anopheles coluzzii Coetzee & Wilkerson 2013 (formerly An. gambiae M-form). Results: By combining microscopic observations with reverse transcriptase PCR (RT-PCR) we reveal that, in addition to gDNA, mRNA from dead parasites also persists inside the mosquito midgut, therefore its quantification cannot accurately reflect live-only parasites at the time of monitoring. In contrast, pre-treating the samples with PMA selectively inhibited qrtPCR amplification of parasite gDNA, with about 15 cycles (Ct-value) difference between PMA-treated and control samples. The limit of detection corresponds to 10 Plasmodium ookinetes. Finally, we show that the PMA-qrtPCR method can be used to quantify bacteria that are present in the mosquito midgut. Conclusion: The PMA-qrtPCR is a suitable method for quantification of viable parasites and bacteria in the midgut of Anopheles mosquitoes. The method will be valuable when studying the molecular interactions between the mosquito, the malaria parasite and midgut microbiota.

Population expansion and gene flow in Giardia duodenalis as revealed by triosephosphate isomerase gene

Parasites and Vectors -

Background: Giardia duodenalis is a protozoan parasite that can cause significant diarrhoeal diseases. Knowledge of population genetics is a prerequisite for ascertaining the invasion patterns of this parasite. In order to infer evolutionary patterns that could not be uncovered based on the morphological features, a population genetic study with the incorporation of molecular marker was carried out to access the genetic structure of G. duodenalis isolated from the Malaysian population and the global populations. Methods: A total of 154 samples positive for Giardia, collected from different Malaysian communities, were subjected to DNA amplification and sequencing targeting three genetic loci (tpi, gdh, and bg). The tpi sequences together with sequences from the global data obtained from the NCBI GenBank were used for genetic diversity analyses including identification of haplotypes, haplotype diversity, nucleotide diversity, Tajima’s D and Fu and Li’s D, gene flow and genetic differentiation tests. Results: Analysis of the Malaysian and global data showed that assemblages A, B, and E (the most prevalent assemblages in humans and animals), have different levels of genetic diversity. Assemblage B had the highest level of both haplotype diversity and nucleotide diversity, followed by assemblage E. The analysis also revealed population expansion and high gene flow in all assemblages. No clear genetic structure was observed across five continents (i.e., the Americas, Europe, Asia, Australia and Africa). However, median joining network of assemblage B formed a cluster that was exclusively isolated from Asia while other haplotypes were well dispersed across the continents. Conclusions: This study provides new insight into the genetic diversity of Giardia assemblages in different geographical regions. The significant result shown by gene flow and genetic differentiation analyses as well as test of neutrality among the populations should have brought a clearer picture to the dynamics and distribution of Giardia infection.

Pages

Subscribe to -   PALE-Blu Data Portal aggregator - Recent Related Articles