Recent Related Articles

Development of patent Litomosoides sigmodontis infections in semi-susceptible C57BL/6 mice in the absence of adaptive immune responses

Parasites and Vectors -

Background: One of the most advantageous research aspects of the murine model of filariasis, Litomosoides sigmodontis, is the availability of mouse strains with varying susceptibility to the nematode infection. In C57BL/6 mice, L. sigmodontis worms are largely eliminated in this strain by day 40 post-infection and never produce their offspring, microfilariae (Mf). This provides a unique opportunity to decipher potential immune pathways that are required by filariae to achieve a successful infection. In this study we tracked worm development and patency, the production of microfilariae and thus the transmission life-stage, in Rag2IL-2Rγ −/− mice which are deficient in T, B and NK cell populations.FindingsAlthough worm burden was comparable between wildtype (WT) and Rag2IL-2Rγ −/− mice on d30, by day 72 post-infection, parasites in Rag2IL-2Rγ −/− mice were still in abundance, freely motile and all mice presented high quantities of Mf both at the site of infection, the thoracic cavity (TC), and in peripheral blood. Levels of cytokine (IL-4, IL-6, TNFα) and chemokine (MIP-2, RANTES, Eotaxin) parameters were generally low in the TC of infected Rag2IL-2Rγ −/− mice at both time-points. The frequency of neutrophils however was higher in Rag2IL-2Rγ −/− mice whereas eosinophils and macrophage populations, including alternatively activated macrophages, were elevated in WT controls. Conclusion: Our data highlight that adaptive immune responses prevent the development of patent L. sigmodontis infections in semi-susceptible C57BL/6 mice and suggest that induction of such responses may offer a strategy to prevent transmission of human filariasis.

Two COWP-like cysteine rich proteins from Eimeria nieschulzi (coccidia, apicomplexa) are expressed during sporulation and involved in the sporocyst wall formation

Parasites and Vectors -

Background: The family of cysteine rich proteins of the oocyst wall (COWPs) originally described in Cryptosporidium can also be found in Toxoplasma gondii (TgOWPs) localised to the oocyst wall as well. Genome sequence analysis of Eimeria suggests that these proteins may also exist in this genus and led us to the assumption that these proteins may also play a role in oocyst wall formation. Methods: In this study, COWP-like encoding sequences had been identified in Eimeria nieschulzi. The predicted gene sequences were subsequently utilized in reporter gene assays to observe time of expression and localisation of the reporter protein in vivo. Results: Both investigated proteins, EnOWP2 and EnOWP6, were expressed during sporulation. The EnOWP2-promoter driven mCherry was found in the cytoplasm and the EnOWP2, respectively EnOWP6, fused to mCherry was initially observed in the extracytoplasmatic space between sporoblast and oocyst wall. This, so far unnamed compartment was designated as circumplasm. Later, the mCherry reporter co-localised with the sporocyst wall of the sporulated oocysts. This observation had been confirmed by confocal microscopy, excystation experiments and IFA. Transcript analysis revealed the intron-exon structure of these genes and confirmed the expression of EnOWP2 and EnOWP6 during sporogony. Conclusions: Our results allow us to assume a role, of both investigated EnOWP proteins, in the sporocyst wall formation of E. nieschulzi. Data mining and sequence comparisons to T. gondii and other Eimeria species allow us to hypothesise a conserved process within the coccidia. A role in oocyst wall formation had not been observed in E. nieschulzi.

Behavioural adaptations of argulid parasites (Crustacea: Branchiura) to major challenges in their life cycle

Parasites and Vectors -

Fish lice (Argulus spp.) are obligate ectoparasites, which contrary to most aquatic parasites, retain the ability to swim freely throughout the whole of their life. In fish farms, they can quickly increase in numbers and without effective control cause argulosis, which results in the reduced growth and survival of their fish hosts. The morphology of Argulus spp, including their sensory organs, is suitable for both parasitism and free-swimming. By spending a considerable amount of time away from their host, these parasites risk being excessively dispersed, which could endanger mating success. Here we present a review of recent studies on the behaviour of Argulus spp, especially the aggregative behaviour that mitigates the dilution of the parasite population. Aggregation of parasites, which is especially important during the period of reproduction, occurs on different scales and involves both the aggregation of the host and the aggregation of the parasites on the host. The main behavioural adaptations of Argulus spp, including searches for hosts and mates, host manipulation and host choice, are all focused on the fish. As these ectoparasites repeatedly change hosts and inflict skin damage, they can act as vectors for fish pathogens. The development of environmentally friendly measures for the control and prevention of argulosis needs to take into account the behaviour of the parasites.

Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion

Parasites and Vectors -

Background: Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. Methods: T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. Results: We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. Conclusion: The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.

Population regulation in Gyrodactylus salaris – Atlantic salmon ( Salmo salar L.) interactions: testing the paradigm

Parasites and Vectors -

Background: Gyrodactylus salaris is a directly transmitted ectoparasite that reproduces in situ on its fish host. Wild Norwegian (East Atlantic) salmon stocks are thought to be especially susceptible to the parasite due to lack of co-adaptation, contrary to Baltic salmon stocks. This study i) identifies whether time- and density-dependent mechanisms in gyrodactylid population growth exist in G. salaris-Atlantic salmon interactions and ii) based on differences between Norwegian and Baltic stocks, determines whether the ‘Atlantic susceptible, Baltic resistant’ paradigm holds as an example of local adaptation. Methods: A total of 18 datasets of G. salaris population growth on individually isolated Atlantic salmon (12 different stocks) infected with three parasite strains were re-analysed using a Bayesian approach. Datasets included over 2000 observations of 388 individual fish. Results: The best fitting model of population growth was time-limited; parasite population growth rate declined consistently from the beginning of infection. We found no evidence of exponential population growth in any dataset. In some stocks, a density dependence in the size of the initial inoculum limited the maximum rate of parasite population growth. There is no evidence to support the hypothesis that all Norwegian and Scottish Atlantic salmon stocks are equally susceptible to G. salaris, while Baltic stocks control and limit infections due to co-evolution. Northern and Western Norwegian as well as the Scottish Shin stocks, support higher initial parasite population growth rates than Baltic, South-eastern Norwegian, or the Scottish Conon stocks, and several Norwegian stocks tested (Akerselva, Altaelva, Lierelva, Numedalslågen), and the Scottish stocks (i.e. Conon, Shin), were able to limit infections after 40–50 days. No significant differences in performance of the three parasite strains (Batnfjordselva, Figga, and Lierelva), or the two parasite mitochondrial haplotypes (A and F) were observed. Conclusions: Our study shows a spectrum of growth rates, with some fish of the South-eastern Norwegian stocks sustaining parasite population growth rates overlapping those seen on Baltic Neva and Indalsälv stocks. This observation is inconsistent with the ‘Baltic-resistant, Atlantic-susceptible’ hypothesis, but suggests heterogeneity, perhaps linked to other host resistance genes driven by selection for local disease syndromes.

Spatio-temporal prevalence of porcine cysticercosis in Madagascar based on meat inspection

Parasites and Vectors -

Background: Taenia solium cysticercosis is a parasitic meat-borne disease that is highly prevalent in pigs and humans in Africa, but the burden is vastly underestimated due to the lack of official control along the pork commodity chain, which hampers long-term control policies. Methods: The apparent and corrected prevalences of T. solium cysticercosis were investigated in pork carcasses slaughtered and retailed in Antananarivo (Madagascar), thanks to a 12-month monitoring plan in two urban abattoirs. Results: Overall apparent prevalence was estimated at 4.6 % [4.2 – 5.0 %]. The corrected overall prevalence defined as the estimated prevalence after accounting for the sensitivity of meat inspection was 21.03 % [19.18- 22.87 %]. Significant differences among geoclimatic regions were observed only for indigenous pigs, with an apparent prevalence estimated at 7.9 % [6.0 – 9.9 %] in the northern and western regions, 7.3 % [6.0 – 8.6 %] in the central region, and 6.2 % [4.7 – 7.8 %] in the southern region. In the central region, where both exotic and indigenous pigs were surveyed, indigenous pigs were 8.5 times [6.7 – 10.7] more likely to be infected than exotic improved pigs. Urban consumers were more likely to encounter cysticercosis in pork in the rainy season, which is a major at risk period, in particular in December. Differences between abattoirs were also identified. Conclusion: Our results underline the need for improved surveillance and control programmes to limit T. solium cysticercosis in carcasses by introducing a risk-based meat inspection procedure that accounts for the origin and breed of the pigs, and the season.

Emergence of babesiosis in China-Myanmar border areas

Parasites and Vectors -

E. Vannier and P. J. Krause presented an excellent article on “Babesiosis in China, an emerging threat” in the Lancet Infectious Diseases in December 2014, which updated research on human babesiosis in China. However, a neglected and emerging issue has not been mentioned in EV & PJK’s article, that is the co-infections with B. microti and P. falciparum parasites that exist in syndemic areas, spatially in the China-Myanmar border areas of Yunnan province, China. Therefore, two important issues are addressed in here, including (i) the new emerging infections with Babesia spp. which are normally ignored in malaria endemic areas due to similarities in pathogenic morphology and clinical symptoms, (ii) additional consideration on babesiosis rather than drug-resistant malaria when anti-malaria treatment for the febrile cases in clinics fails.

Experimental host preference of diapause and non-diapause induced Culex pipiens pipiens (Diptera: Culicidae)

Parasites and Vectors -

Background: Culex pipiens pipiens plays an important role in the transmission of several vector-borne pathogens such as West Nile virus (WNV) in North America. Laboratory and field studies suggest that this species is ornithophilic but because of genetic hybridization with sibling species during the active mosquito season, it may occasionally feed on mammals. Adult female Cx. p. pipiens undergo a facultative diapause and may serve as an overwintering mechanism for WNV. To determine the effect of diapause on the innate host preference of Cx. p. pipiens emerging from winter hibernation, we conducted host-choice experiments using bird and mammal hosts. Methods: Mosquitoes were reared under non-diapause induced (NDI), diapause induced (DI), and field collected from overwintering (OW) hibernaculae. They were released into a large mesh enclosure housing two lard can traps, and given a choice between feeding on a dove or a rat. Results: Host seeking Cx. p. pipiens were four times more likely to feed on the dove than the rat, regardless of experimental conditions. Under NDI conditions, Cx. p. pipiens were (p < 0.001) more attracted to the bird (79.9 % [75.6-84.1]) than the rat (20.1 [15.9-24.4]). Overwintering mosquitoes and those exposed to DI conditions were also significantly (p < 0.001) more attracted to birds (81.6 % [75.9-87.3]) than to rats (18.5 [12.7-24.2]). Conclusions: We provide new information about the innate host preference of Cx. p. pipiens emerging from diapause in temperate habitats where winter survival is crucial for disease transmission cycles. Although we showed that Cx. p. pipiens prefers an avian to a mammalian host, nearly 20 % of emerging mosquitoes in the spring could feed on mammals. Changes in host preferences may also contain valuable clues about transmission dynamics and subsequent timely interventions by vector control and public health practitioners.

Pages

Subscribe to -   PALE-Blu Data Portal aggregator - Recent Related Articles