Recent Related Articles

Genetic variation of pfhrp2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test

Parasites and Vectors -

Background: The genetic variation in the Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene that may compromise the use of pfhrp2-based rapid diagnostic tests (RDTs) for the diagnosis of malaria was assessed in P. falciparum isolates from Yemen. Methods: This study was conducted in Hodeidah and Al-Mahwit governorates, Yemen. A total of 622 individuals with fever were examined for malaria by CareStart™ malaria HRP2-RDT and Giemsa-stained thin and thick blood films. The Pfhrp2 gene was amplified and sequenced from 180 isolates, and subjected to amino acid repeat types analysis. Results: A total of 188 (30.2 %) participants were found positive for P. falciparum by the RDT. Overall, 12 different amino acid repeat types were identified in Yemeni isolates. Six repeat types were detected in all the isolates (100 %) namely types 1, 2, 6, 7, 10 and 12 while types 9 and 11 were not detected in any of the isolates. Moreover, the sensitivity and specificity of the used PfHRP2-based RDTs were high (90.5 % and 96.1 %, respectively). Conclusion: The present study provides data on the genetic variation within the pfhrp2 gene, and its potential impact on the PfHRP2-based RDTs commonly used in Yemen. CareStart™ Malaria HRP2-based RDT showed high sensitivity and specificity in endemic areas of Yemen.

Cost analysis of options for management of African Animal Trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda

Parasites and Vectors -

Background: Tsetse-transmitted African trypanosomes cause both nagana (African animal Trypanosomiasis-AAT) and sleeping sickness (human African Trypanosomiasis - HAT) across Sub-Saharan Africa. Vector control and chemotherapy are the contemporary methods of tsetse and trypanosomiasis control in this region. In most African countries, including Uganda, veterinary services have been decentralised and privatised. As a result, livestock keepers meet the costs of most of these services. To be sustainable, AAT control programs need to tailor tsetse control to the inelastic budgets of resource-poor small scale farmers. To guide the process of tsetse and AAT control toolkit selection, that now, more than ever before, needs to optimise resources, the costs of different tsetse and trypanosomiasis control options need to be determined. Methods: A detailed costing of the restricted application protocol (RAP) for African trypanosomiasis control in Tororo District was undertaken between June 2012 and December 2013. A full cost calculation approach was used; including all overheads, delivery costs, depreciation and netting out transfer payments to calculate the economic (societal) cost of the intervention. Calculations were undertaken in Microsoft Excel™ without incorporating probabilistic elements. Results: The cost of delivering RAP to the project was US$ 6.89 per animal per year while that of 4 doses of a curative trypanocide per animal per year was US$ 5.69. However, effective tsetse control does not require the application of RAP to all animals. Protecting cattle from trypanosome infections by spraying 25 %, 50 % or 75 % of all cattle in a village costs US$ 1.72, 3.45 and 5.17 per animal per year respectively. Alternatively, a year of a single dose of curative or prophylactic trypanocide treatment plus 50 % RAP would cost US$ 4.87 and US$ 5.23 per animal per year. Pyrethroid insecticides and trypanocides cost 22.4 and 39.1 % of the cost of RAP and chemotherapy respectively. Conclusions: Cost analyses of low cost tsetse control options should include full delivery costs since they constitute 77.6 % of all project costs. The relatively low cost of RAP for AAT control and its collateral impact on tick control make it an attractive option for livestock management by smallholder livestock keepers.

Multilocus microsatellite typing of Leishmania infantum isolates in monitored Leishmania/ HIV coinfected patients

Parasites and Vectors -

Background: Leishmania infantum is the main etiological agent of both visceral and cutaneous clinical forms of leishmaniasis in the Mediterranean area. Leishmania/HIV coinfection in this area is characterized by a chronic course and frequent recurrences of clinical episodes. The present study using Multilocus Microsatellite Typing (MLMT) analysis, a highly discriminative tool, aimed to genetically characterize L. infantum isolates taken from monitored Leishmania/HIV coinfected patients presenting successive clinical episodes. Methods: In this study, by the analysis of 20 microsatellite loci, we studied the MLMT profiles of 25 L. infantum isolates from 8 Leishmania/HIV coinfected patients who had experienced several clinical episodes. Two to seven isolates per patient were taken before and after treatment, during clinical and non-clinical episodes, with time intervals of 6 days to 29 months. Genetic diversity, clustering and phenetic analyses were performed. Results: MLMT enabled us to study the genetic characteristics of the 25 L. infantum isolates, differentiating 18 genotypes, corresponding to a genotypic diversity of 0.72. Fifteen genotypes were unique in the total sample set and only 3 were repeated, 2 of which were detected in different patients. Both clustering and phylogenetic analyses provided insights into the genetic links between the isolates; in five patients isolates showed clear genetic links: either the genotype was exactly the same or only slightly different. In contrast, the isolates of the other three patients were dispersed in different clusters and some could be the result of mixing between populations. Conclusions: Our data indicated a great MLMT variability between isolates from coinfected patients and no predominant genotype was observed. Despite this, almost all clinical episodes could be interpreted as a relapse rather than a reinfection. The results showed that diverse factors like an intrapatient evolution over time or culture bias could influence the parasite population detected in the patient, making it difficult to differentiate between relapse and reinfection.

Mitochondrial DNA sequence divergence and diversity of Glossina fuscipes fuscipes in the Lake Victoria basin of Uganda: implications for control

Parasites and Vectors -

Background: Glossina fuscipes fuscipes is the main vector of African Trypanosomiasis affecting both humans and livestock in Uganda. The human disease (sleeping sickness) manifests itself in two forms: acute and chronic. The Lake Victoria basin in Uganda has the acute form and a history of tsetse re-emergence despite concerted efforts to control tsetse. The government of Uganda has targeted the basin for tsetse eradication. To provide empirical data for this initiative, we screened tsetse flies from the basin for genetic variation at the mitochondrial DNA cytochrome oxidase II (mtDNA COII) gene with the goal of investigating genetic diversity and gene flow among tsetse, tsetse demographic history; and compare these results with results from a previous study based on microsatellite loci data in the same area. Methods: We collected 429 Gff tsetse fly samples from 14 localities in the entire Ugandan portion of the Lake Victoria coast, covering 40,000 km 2 . We performed genetic analyses on them and added data collected for 56 Gff individuals from 4 additional sampling sites in the basin. The 529pb partial mitochondrial DNA cytochrome oxidase II (mtDNA COII) sequences totaling 485 were analysed for genetic differentiation, structuring and demographic history. The results were compared with findings from a previous study based on microsatellite loci data from the basin. Results: The differences within sampling sites explained a significant proportion of the genetic variation. We found three very closely related mtDNA population clusters, which co-occurred in multiple sites. Although Φ ST (0 – 0.592; P < 0.05) and Bayesian analyses suggest some level of weak genetic differentiation, there is no correlation between genetic divergence and geographic distance (r = 0.109, P = 0.185), and demographic tests provide evidence of locality-based demographic history. Conclusion: The mtDNA data analysed here complement inferences made in a previous study based on microsatellite data. Given the differences in mutation rates, mtDNA afforded a look further back in time than microsatellites and revealed that Gff populations were more connected in the past. Microsatellite data revealed more genetic structuring than mtDNA. The differences in connectedness and structuring over time could be related to vector control efforts. Tsetse re-emergence after control interventions may be due to re-invasions from outside the treated areas, which emphasizes the need for an integrated area-wide tsetse eradication strategy for sustainable removal of the tsetse and trypanosomiasis problem from this area.

Research advances in microneme protein 3 of Toxoplasma gondii

Parasites and Vectors -

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite. It has extensive host populations and is prevalent globally; T. gondii infection can cause a zoonotic parasitic disease. Microneme protein 3 (MIC3) is a secreted protein that is expressed in all stages of the T. gondii life cycle. It has strong immunoreactivity and plays an important role in the recognition, adhesion and invasion of host cells by T. gondii. This article reviews the molecular structure of MIC3, its role in the invasion of host cells by parasites, its relationship with parasite virulence, and its induction of immune protection to lay a solid foundation for an in-depth study of potential diagnostic agents and vaccines for preventing toxoplasmosis.

A new real-time PCR protocol for detection of avian haemosporidians

Parasites and Vectors -

Background: Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Methods: Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). Results: The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ 2  = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples. Conclusions: Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.

Non-native gobies facilitate the transmission of Bucephalus polymorphus (Trematoda)

Parasites and Vectors -

Background: Introduced species can modify local host-parasite dynamics by amplifying parasite infection which can ‘spill-back’ to the native fauna, whether they are competent hosts for local parasites, or by acting as parasite sinks with ‘dilution’ of infection decreasing the parasite burden of native hosts. Recently infection by the trematode Bucephalus polymorphus has increased in several European rivers, being attributed to the introduction of intermediate host species from the Ponto-Caspian region. Using a combination of field and experimental data, we evaluated the competence of non-native and native fish as intermediate hosts for B. polymorphus and its role for parasite development in a definitive host. Methods: The density of 0+ juvenile fish (the second intermediate hosts for B. polymorphus) was measured in the River Morava, Czech Republic and fish were screened for natural metacercariae infection. The stomach contents of predatory fish that are definitive hosts of B. polymorphus were examined to assess the importance of non-native gobies for parasite transmission. In semi-natural conditions, parasite establishment, initial survival, and maturity rates in experimentally infected definitive hosts pikeperch Sander lucioperca were measured in flukes recovered from native white bream Abramis bjoerkna and non-native tubenose goby Proterorhinus semilunaris and round goby Neogobius melanostomus. Adult fluke size and egg production was also measured to evaluate the potential effect of intermediate host species on parasite fitness. Results: We detected high natural infection parameters of B. polymorphus in native cyprinids and non-native gobies compared to data from the period prior to goby establishment. Both fish groups are consumed by predatory fish and represent a major component of the littoral fish community. Parasite establishment and adult size in definitive hosts was equivalent among the second intermediate host species, despite a lower size of metacercariae recovered from round gobies. However, development in the definitive host of flukes recovered from gobies was reduced, showing higher mortality, delayed maturity and lower egg production, in comparison with parasites from native hosts. Conclusions: Substantial ‘spill-back’ of B. polymorphus due to higher transmission rates after establishment of non-native gobies was partially buffered by decreased fitness of B. polymorphus that underwent development in gobies.

Eco-epidemiology of visceral leishmaniasis in Ethiopia

Parasites and Vectors -

Visceral leishmaniasis (VL, Kala-azar) is one of the growing public health challenges in Ethiopia with over 3.2 million people at risk and estimated up to 4000 new cases per year. Historically, VL was known as the diseases of the lowlanders; in the lower and upper Kola agro-ecological zones of Ethiopia. The 2005–07 out breaks in highlands of Libo Kemkem and Fogera, in the Woina Degas, that affected thousands and claimed the life of hundreds misdiagnosed as drug resistance malaria marked that VL is no more the problem of the lowlanders. The Kola (lower and upper) and the Woina Dega are the most productive agroecological zones, supporting both the ongoing and planned expansions of large or small scale agriculture and/or agriculture based industries. Thus, the (re)emergence of VL is not only a public health and social problem but also have a direct implication on the country’s economy and further development. Thus is high time for its control and/or elimination. Yet, the available data seem incomplete to plan for a cost-effective and efficient VL control strategy: there is a need to update data on vector behaviour in specific ecosystems and the roles of domestic animals need to be ascertained. The effectiveness and social acceptability of available vector control tools need be evaluated. There is a need for identifying animal reservoir(s), or establish the absence of zoonosis in Ethiopia. The planning of prevention of (re)emergence and spread of VL to areas adjacent to endemic foci need be supported with information from spatio-temporal mapping. In affected communities, available data showed that their knowledge about VL is generally very low. Thus, well designed studies to identify risk factors, as well as better tools for social mobilization with the understanding of their knowledge, aptitude and practice towards VL are necessary.

Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction

Parasites and Vectors -

Background: In resource-limited countries, stool microscopy is the diagnostic test of choice for intestinal parasites (soil-transmitted helminths and/or intestinal protozoa). However, sensitivity and specificity is low. Improved diagnosis of intestinal parasites is especially important for accurate measurements of prevalence and intensity of infections in endemic areas. Methods: The study was carried out in Orán, Argentina. A total of 99 stool samples from a local surveillance campaign were analyzed by concentration microscopy and McMaster egg counting technique compared to the analysis by multi-parallel quantitative real-time polymerase chain reaction (qPCR). This study compared the performance of qPCR assay and stool microscopy for 8 common intestinal parasites that infect humans including the helminths Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Trichuris trichiura, and the protozoa Giardia lamblia, Cryptosporidium parvum/hominis, and Entamoeba histolytica, and investigated the prevalence of polyparasitism in an endemic area. Results: qPCR showed higher detection rates for all parasites as compared to stool microscopy except T. trichiura. Species-specific primers and probes were able to distinguish between A. duodenale (19.1 %) and N. americanus (36.4 %) infections. There were 48.6 % of subjects co-infected with both hookworms, and a significant increase in hookworm DNA for A. duodenale versus N. americanus (119.6 fg/μL: 0.63 fg/μL, P < 0.001) respectively. qPCR outperformed microscopy by the largest margin in G. lamblia infections (63.6 % versus 8.1 %, P < 0.05). Polyparasitism was detected more often by qPCR compared to microscopy (64.7 % versus 24.2 %, P < 0.05). Conclusions: Multi-parallel qPCR is a quantitative molecular diagnostic method for common intestinal parasites in an endemic area that has improved diagnostic accuracy compared to stool microscopy. This first time use of multi-parallel qPCR in Argentina has demonstrated the high prevalence of intestinal parasites in a peri-urban area. These results will contribute to more accurate epidemiological survey, refined treatment strategies on a public scale, and better health outcomes in endemic settings.

Efficacy of a proprietary formulation of fipronil/(S)-methoprene/cyphenothrin against Ixodes scapularis tick infestations on dogs

Parasites and Vectors -

Background: Efficacy of FRONTLINE® TRITAK® For Dogs (fipronil/(S)-methoprene/cyphenothrin, Merial, Inc., Duluth, GA) against Ixodes scapularis was evaluated in two separate, but concurrent laboratory studies. Methods: One day after topical treatment with placebo or active, dogs (n = 24) were infested with 50 unfed adult Ixodes scapularis ticks, with repeat infestations on Days 7, 14, 21 and 28. The number of live ticks was counted at 6 hours post-infestation in the first study (n = 12) and at 24 hours post-infestation in the second study (n = 12). Results: Observed efficacies in study 1 were 93-99 % at 6 hour assessments on Day 1 through Day 28 and in the second study, 98-100 % at 24 hour assessments, occurring on Day 2 through Day 29. Conclusions: A single dose of FRONTLINE® TRITAK® For Dogs (fipronil/(S)-methoprene/cyphenothrin) (0.67 ml or 1.34 ml) prevented the establishment of a new infestation following treatment, as well as the repeated weekly re-infestations with Ixodes scapularis ticks, for 4 weeks.

Schistosoma mansoni among pre-school children in Musozi village, Ukerewe Island, North-Western-Tanzania: prevalence and associated risk factors

Parasites and Vectors -

Background: Recent evidence indicates that pre-school children (PSC) living in S. mansoni highly endemic areas are at similar risk of schistosomiasis infection and morbidity as their school aged siblings. Recognizing this fact, the World Health Organization (WHO) is considering including this age group in highly endemic areas in control programmes using mass drug administration (MDA). However, detailed epidemiological information on S. mansoni infection among PSC is lacking for many endemic areas, specifically in Tanzania. This study was conducted to determine the prevalence of S. mansoni infection and its associated risk factors among PSC in Ukerewe Island, North-Western Tanzania. Methods: This was a cross-sectional study, which studied 400 PSC aged 1–6 years. The Kato-Katz (K-K) technique and the point of care circulating cathodic antigen (CCA) immunodiagnostic test were used to diagnose S. mansoni infection in stool and urine samples respectively. A pre-tested questionnaire was used to collect demographic data and water contact behaviour of the children from their parents/guardians. Results: Based on the K-K technique, 44.4 % (95 % CI: 39.4–49.4) pre-school children were infected with S. mansoni and the overall geometric mean eggs per gram of faeces (GM-epg) was 110.6 epg with 38.2 and 14.7 % having moderate and heavy intensity infections respectively. Based on the CCA, 80.1 %, (95 % CI: 76.0–84.0) were infected if a trace was considered positive, and 45.9 %, (95 % CI: 40.9–50.9), were infected if a trace was considered negative. Reported history of lake visits (AOR = 2.31, 95 % CI: 1.06–5.01, P < 0.03) and the proximity to the lake shore (<500 m) (AOR = 2.09, 95 % CI: 1.05–4.14, P < 0.03) were significantly associated with S. mansoni infection. Reported lake visit frequency (4–7 days/week) was associated with heavy intensities of S. mansoni infection (P < 0.00). Conclusion: The prevalence of S. mansoni infection in the study population using K-K and CCA-trace-negative was moderate. The frequency of lake visits and the proximity to the lake shore were associated with the infection of S. mansoni and its intensity. These findings call for the need to include the PSC in MDA programmes, public health education and provision of safe water for bathing.

Humans frequently exposed to a range of non-human primate malaria parasite species through the bites of Anopheles dirus mosquitoes in South-central Vietnam

Parasites and Vectors -

Background: Recent studies have described natural human infections of the non-human primate parasites Plasmodium knowlesi and Plasmodium cynomolgi. In Southeast Asia, mosquitoes of the Anopheles leucosphyrus group bite both humans and monkeys in the forest and thus offer a possible route for Plasmodium species to bridge the species barrier. In this study we analysed the species composition of malarial sporozoites infecting the salivary glands of Anopheles dirus in order to determine their potential role as bridge vectors of Plasmodium parasites from monkeys to humans. Methods: Mosquitoes were collected in the forest and forest fringe area of Khanh Phu commune by human-baited landing collection. Anopheles species were determined on the basis of morphologic features. Sporozoite-infected salivary glands were applied to filter paper and dried in an ambient atmosphere, before storage in closed vials at 4–6 °C. Detection and identification of Plasmodium species in salivary glands were carried out by nested-PCR of the small subunit ribosomal RNA gene. Results: Six species of Plasmodium parasites were detected by PCR, of which P. vivax was the most common, followed by P. knowlesi, P. inui, P. cynomolgi, P. coatneyi and P. falciparum. Twenty-six of the 79 sporozoite infected mosquitoes showed multiple infections, most of which were a combination of P. vivax with one or more of the non-human primate Plasmodium species. Conclusions: These results suggest that humans overnighting in this forest are frequently inoculated with both human and non-human primate malaria parasites, leading to a situation conducive for the emergence of novel zoonotic malaria.

The formation of egg granulomas in the spleens of mice with late Schistosoma japonicum infection alters splenic morphology

Parasites and Vectors -

Background: Splenomegaly is a characteristic symptom of schistosome infection. Unlike the well known hepatic pathology of schistosomiasis, splenomegaly has received little scientific research and is generally considered to be a non-specific congestion caused by increased blood pressure within the venous sinuses. Moreover, to date, few studies have reported the deposition of schistosome eggs in the spleen. In a previous study, however, we observed that prolonged S. japonicum infections destroyed the structure of the lymphoid follicles in the spleen of mice at 8 weeks post-infection and found that eggs were frequently deposited in the spleen. These prior observations suggested a relationship between granulomas and splenic morphology which we investigate further in this study. Methods: C57BL/6 mice were infected percutaneously with twenty cercariae of S. japonicum and sacrificed at different times post-infection. The number of eggs present in the homogenates of spleens and livers was quantified by light microscopy. Splenic pathology was observed by immunohistochemistry staining of paraffin-embedded sections. At 18 weeks post-infection the infected mice were divided into two groups (granulomatous spleens and non-granulomatous spleens). Serum antibodies and cytokines in the antigen- or mitogen-stimulated lymphocyte cultures were then determined by ELISA. Results: We found that eggs deposition in the spleens of infected mice occurred frequently but only occasionally led to granulomas formation. The lymphoid follicles within the granulomatous spleens maintained their structural integrity until 20 weeks post-infection, unlike the lymphoid follicles in spleens without egg granulomas. Mice with granulomatous spleens accompanied by lymphoid follicles exhibited a germinal center (GC)-like structure and had enhanced humoral immune responses. Splenocytes from granulomatous spleens also showed significantly elevated levels of Th2 cytokines during late infection stages. Conclusions: Our results highlight that lymphoid follicles, which are not completely destroyed or are re-established in the spleen, can change the local immune environment and lead to changes in the splenic morphology of mice with chronic schistosomiasis.

Not every worm wrapped around a stick is a guinea worm: a case of Onchocerca volvulus mimicking Dracunculus medinensis

Parasites and Vectors -

Background: Despite being certified guinea worm free in 2007, Cameroon continues surveillance efforts to ensure rapid verification of any suspected reoccurrence. This includes the investigation of every rumor and confirmation of each suspicious expulsed worm. This paper presents fieldwork carried out to investigate a guinea worm rumor in Cameroon which turned out to be an Onchocerca volvulus mimicking Dracunculus medinensis. Methods: The investigation included a field visit to the subsistence farming community where the rumor was reported. During the visit, interviews were conducted with health staff who managed the case and the elderly farmer from whom the worm was retrieved. An investigation of any potential missed guinea worm cases was also conducted through interviews with community residents and reviews of the health facility’s medical records. This was combined with laboratory analyses of water samples from the community’s water sources and the retrieved worm which was removed from the patient via wrapping it around a stick. Results: Microscopy and molecular analyses of the retrieved worm revealed a female Onchocerca volvulus whose expulsion strongly mimicked guinea worm. In addition to presenting findings of our investigation, this paper discusses distinguishing elements between the two parasites and gives an overview of guinea worm eradication efforts in Cameroon as well as current challenges to the worm’s eradication globally. Conclusions: The investigation findings suggest the evolving Onchocerca volvulus worm tropisms’ adaptive survival behavior worth further investigation. Strategies used to successfully control guinea worm in Cameroon could be adapted for Onchocerca volvulus control.

In-depth characterization of trypsin-like serine peptidases in the midgut of the sugar fed Culex quinquefasciatus

Parasites and Vectors -

Background: Culex quinquefasciatus is a hematophagous insect from the Culicidae family that feeds on the blood of humans, dogs, birds and livestock. This species transmits a wide variety of pathogens between humans and animals. The midgut environment is the first location of pathogen-vector interactions for blood-feeding mosquitoes and the expression of specific peptidases in the early stages of feeding could influence the outcome of the infection. Trypsin-like serine peptidases belong to a multi-gene family that can be expressed in different isoforms under distinct physiological conditions. However, the confident assignment of the trypsin genes that are expressed under each condition is still a challenge due to the large number of trypsin-coding genes in the Culicidae family and most likely because they are low abundance proteins. Methods: We used zymography for the biochemical characterization of the peptidase profile of the midgut from C. quinquefasciatus females fed on sugar. Protein samples were also submitted to SDS-PAGE followed by liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis for peptidase identification. The peptidases sequences were analyzed with bioinformatics tools to assess their distinct features. Results: Zymography revealed that trypsin-like serine peptidases were responsible for the proteolytic activity in the midgut of females fed on sugar diet. After denaturation in SDS-PAGE, eight trypsin-like serine peptidases were identified by LC-MS/MS. These peptidases have structural features typical of invertebrate digestive trypsin peptidases but exhibited singularities at the protein sequence level such as: the presence of different amino acids at the autocatalytic motif and substrate binding regions as well as different number of disulfide bounds. Data mining revealed a group of trypsin-like serine peptidases that are specific to C. quinquefasciatus when compared to the culicids genomes sequenced so far. Conclusion: We demonstrated that proteomics approaches combined with bioinformatics tools and zymographic analysis can lead to the functional annotation of trypsin-like serine peptidases coding genes and aid in the understanding of the complexity of peptidase expression in mosquitoes.

Can human schistosomiasis mansoni control be sustained in high-risk transmission foci in Egypt?

Parasites and Vectors -

Background: Control of human schistosomiasis remains a longstanding issue on the agenda of the Egyptian Ministry of Health and Population (MOHP). Substantial impact on morbidity and prevalence of S. mansoni was widely reported after the National Schistosomiasis Control Program (NSCP) extended selective treatment with praziquantel (PZQ) to the Nile Delta in 1992 and upgrading this approach to mass drug administration (MDA) in 1997. Disease elimination, however, eludes NSCP as the micro-level includes many high-risk foci that sustain transmission, which has not been subjected to investigation. Methods: The study included five high-risk Nile Delta villages situated in the Kafr El-Sheikh Governorate. The total sample size amounted to 2382 individuals of both sexes and all ages. Diagnosis was based on four Kato-Katz slides from two consecutive stool samples. Data were investigated using SPSS, comparing proportions with the Chi square test and means with the Student t test, while strength of the associations were subjected to Odds Ratio (OR) analysis. Results: The overall prevalence of schistosomiasis in the study area was found to be 29 %, while the mean geometric mean egg count (GMEC) was low (66.78 ± 4.4) indicating low intensity of infection. The mean village prevalence rates ranged from 16.5 % to 49.5 % and the GMECs from 35.2 to 86.2 eggs per gram (EPG) of stool. The difference of prevalence between villages was statistically significant at P < 0.05, and the prevalence was significantly higher among males than among females, P < 0.05, OR =1.4 and 95 % CI (1.16-1.60). Infection peaked in the next youngest age group (5- ≤ 10 years of age) at an average prevalence of 50.8 % with the GMEC reaching 209 EPG of stool in the village with the highest prevalence. The average prevalence and GMEC among children <5 years were 20.6 % and 92.7 EPG, respectively. Conclusion: Transmission of S mansoni in high-risk areas in the Nile Delta remains uninterrupted calling for improved, more comprehensive control strategies. Further investigations are needed to find out whether these results are due to inefficacy of PZQ, surviving immature worms or drug resistance.

Pages

Subscribe to -   PALE-Blu Data Portal aggregator - Recent Related Articles